exercise:1d5b261952: Difference between revisions

From Stochiki
(Created page with "Suppose that <math>Y = g(X)</math> has a cumulative distribution function <math display = "block">F(e^{e^{x}})</math> with <math>F(x)</math> the distribution function of <...")
 
No edit summary
 
Line 5: Line 5:
with <math>F(x)</math> the distribution function of <math>X</math>. Which of the following functions equal <math>g</math>?
with <math>F(x)</math> the distribution function of <math>X</math>. Which of the following functions equal <math>g</math>?


<ol style="list-style-type:upper-alpha">
<ul class="mw-excansopts">
<li><math>\ln(\ln(x))</math></li>
<li><math>\ln(\ln(x))</math></li>
<li><math>\ln(x)</math></li>
<li><math>\ln(x)</math></li>
Line 11: Line 11:
<li><math>(x-e)^2</math></li>
<li><math>(x-e)^2</math></li>
<li>Impossible to tell</li>
<li>Impossible to tell</li>
</ol>
</ul>

Latest revision as of 22:58, 15 March 2024

Suppose that [math]Y = g(X)[/math] has a cumulative distribution function

[[math]]F(e^{e^{x}})[[/math]]

with [math]F(x)[/math] the distribution function of [math]X[/math]. Which of the following functions equal [math]g[/math]?

  • [math]\ln(\ln(x))[/math]
  • [math]\ln(x)[/math]
  • [math]x-e[/math]
  • [math](x-e)^2[/math]
  • Impossible to tell