exercise:F0b622ac9a: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 32: Line 32:
\newcommand{\mathds}{\mathbb}
\newcommand{\mathds}{\mathbb}
</math></div>
</math></div>
<ul style{{=}}"list-style-type:lower-alpha"><li></li>
 
<li>lab{4.5.9a}
<ul style{{=}}"list-style-type:lower-alpha">
Evaluate <math>F(t) = \int_0^{t^2} (3x^2 + 1) \; dx</math>.</li>
<li>Evaluate <math>F(t) = \int_0^{t^2} (3x^2 + 1) \; dx</math>.</li>
<li>Find <math>F^\prime(t)</math> and <math>F^\prime(2)</math>
<li>Find <math>F^\prime(t)</math> and <math>F^\prime(2)</math>
by taking the derivative of the answer to \ref{ex4.5.9a}.</li>
by taking the derivative of the answer to (a).</li>
<li>Find <math>F^\prime(t)</math> directly using just the Fundamental
<li>Find <math>F^\prime(t)</math> directly using just the Fundamental
Theorem and the Chain Rule.</li>
Theorem and the Chain Rule.</li>
</ul>
</ul>

Latest revision as of 22:10, 23 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]
  • Evaluate [math]F(t) = \int_0^{t^2} (3x^2 + 1) \; dx[/math].
  • Find [math]F^\prime(t)[/math] and [math]F^\prime(2)[/math] by taking the derivative of the answer to (a).
  • Find [math]F^\prime(t)[/math] directly using just the Fundamental Theorem and the Chain Rule.