exercise:C16e9ef582: Difference between revisions

From Stochiki
(Created page with "Suppose <math>F(x)</math> is a continuous cumulative probability distribution function with <math>\lim_{x\rightarrow 1}F(x)=1</math> and <math>F(x)>0</math> for all <math>x</m...")
 
No edit summary
 
Line 1: Line 1:
Suppose <math>F(x)</math> is a continuous cumulative probability distribution function with <math>\lim_{x\rightarrow 1}F(x)=1</math> and <math>F(x)>0</math> for all <math>x</math>. For which of the following <math>g(x)</math> is <math>F(g(x))</math> also a cumulative probability distribution function?
Suppose <math>F(x)</math> is a continuous cumulative probability distribution function with <math>\lim_{x\rightarrow 1}F(x)=1</math> and <math>F(x)>0</math> for all <math>x</math>. For which of the following <math>g(x)</math> is <math>F(g(x))</math> also a cumulative probability distribution function?


<ol style="list-style-type:upper-alpha">
<ul class="mw-excansopts">
<li><math>x^2</math></li>
<li><math>x^2</math></li>
<li><math>\sqrt{|x| + 1} </math></li>
<li><math>\sqrt{|x| + 1} </math></li>
Line 7: Line 7:
<li><math>(1 + e^{-x})^{-1}</math></li>
<li><math>(1 + e^{-x})^{-1}</math></li>
<li><math>1-\ln(1 + e^{-x})</math></li>
<li><math>1-\ln(1 + e^{-x})</math></li>
</ol>
</ul>

Latest revision as of 12:43, 18 March 2024

Suppose [math]F(x)[/math] is a continuous cumulative probability distribution function with [math]\lim_{x\rightarrow 1}F(x)=1[/math] and [math]F(x)\gt0[/math] for all [math]x[/math]. For which of the following [math]g(x)[/math] is [math]F(g(x))[/math] also a cumulative probability distribution function?

  • [math]x^2[/math]
  • [math]\sqrt{|x| + 1} [/math]
  • [math]e^{-x}[/math]
  • [math](1 + e^{-x})^{-1}[/math]
  • [math]1-\ln(1 + e^{-x})[/math]