exercise:1d5b261952: Difference between revisions
From Stochiki
(Created page with "Suppose that <math>Y = g(X)</math> has a cumulative distribution function <math display = "block">F(e^{e^{x}})</math> with <math>F(x)</math> the distribution function of <...") |
No edit summary |
||
Line 5: | Line 5: | ||
with <math>F(x)</math> the distribution function of <math>X</math>. Which of the following functions equal <math>g</math>? | with <math>F(x)</math> the distribution function of <math>X</math>. Which of the following functions equal <math>g</math>? | ||
< | <ul class="mw-excansopts"> | ||
<li><math>\ln(\ln(x))</math></li> | <li><math>\ln(\ln(x))</math></li> | ||
<li><math>\ln(x)</math></li> | <li><math>\ln(x)</math></li> | ||
Line 11: | Line 11: | ||
<li><math>(x-e)^2</math></li> | <li><math>(x-e)^2</math></li> | ||
<li>Impossible to tell</li> | <li>Impossible to tell</li> | ||
</ | </ul> |
Latest revision as of 22:58, 15 March 2024
Suppose that [math]Y = g(X)[/math] has a cumulative distribution function
[[math]]F(e^{e^{x}})[[/math]]
with [math]F(x)[/math] the distribution function of [math]X[/math]. Which of the following functions equal [math]g[/math]?
- [math]\ln(\ln(x))[/math]
- [math]\ln(x)[/math]
- [math]x-e[/math]
- [math](x-e)^2[/math]
- Impossible to tell