exercise:B8ee1f5c45: Difference between revisions

From Stochiki
(Created page with "An actuary models the lifetime of a device using the random variable <math>Y = 10X^{0.8}</math>, where <math>X</math> is an exponential random variable with mean 1. Let <math>...")
 
mNo edit summary
 
Line 9: Line 9:
<li><math>(0.1y )^{1.25} \exp[−0.125(0.1y)^{0.25} ]</math></li>
<li><math>(0.1y )^{1.25} \exp[−0.125(0.1y)^{0.25} ]</math></li>
<li><math>0.125(0.1y )^{0.25} \exp[−(0.1y )^{1.25} ]</math></li>
<li><math>0.125(0.1y )^{0.25} \exp[−(0.1y )^{1.25} ]</math></li>
</ul>


{{soacopyright | 2023}}
{{soacopyright | 2023}}

Latest revision as of 19:59, 4 May 2023

An actuary models the lifetime of a device using the random variable [math]Y = 10X^{0.8}[/math], where [math]X[/math] is an exponential random variable with mean 1. Let [math]f(y)[/math] be the density function for [math]Y[/math].

Determine [math]f(y)[/math] for [math]y\gt0[/math].

  • [math]10 y^{0.8} \exp(−8 y^{−0.2} )[/math]
  • [math]8 y^{−0.2} \exp(−10 y^{0.8} )[/math]
  • [math]8 y^{−0.2} \exp[−(0.1y)^{1.25} ][/math]
  • [math](0.1y )^{1.25} \exp[−0.125(0.1y)^{0.25} ][/math]
  • [math]0.125(0.1y )^{0.25} \exp[−(0.1y )^{1.25} ][/math]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.