guide:8d1da543a5: Difference between revisions

From Stochiki
No edit summary
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
\newcommand{\mathds}{\mathbb}</math></div>
{{Alert-warning|This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion. }}
In order to further advance with Peter-Weyl theory, we need to talk about integration over <math>G</math>. In the finite group case the situation is trivial, as follows:
{{proofcard|Proposition|proposition-1|Any finite group <math>G</math> has a unique probability measure which is invariant under left and right translations,


<math display="block">
\mu(E)=\mu(gE)=\mu(Eg)
</math>
and this is the normalized counting measure on <math>G</math>, given by <math>\mu(E)=|E|/|G|</math>.
|This is indeed something trivial, which follows from definitions.}}
In the general, continuous case, let us begin with the following key result:
{{proofcard|Proposition|proposition-2|Given a unital positive linear form <math>\psi:C(G)\to\mathbb C</math>, the limit
<math display="block">
\int_\varphi f=\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\psi^{*k}(f)
</math>
exists, and for a coefficient of a representation <math>f=(\tau\otimes id)w</math> we have
<math display="block">
\int_\varphi f=\tau(P)
</math>
where <math>P</math> is the orthogonal projection onto the <math>1</math>-eigenspace of <math>(id\otimes\psi)w</math>.
|By linearity it is enough to prove the first assertion for functions of the following type, where <math>w</math> is a Peter-Weyl representation, and <math>\tau</math> is a linear form:
<math display="block">
f=(\tau\otimes id)w
</math>
Thus we are led into the second assertion, and more precisely we can have the whole result proved if we can establish the following formula, with <math>f=(\tau\otimes id)w</math>:
<math display="block">
\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\psi^{*k}(f)=\tau(P)
</math>
In order to prove this latter formula, observe that we have:
<math display="block">
\psi^{*k}(f)
=(\tau\otimes\psi^{*k})w
=\tau((id\otimes\psi^{*k})w)
</math>
Let us set <math>M=(id\otimes\psi)w</math>. In terms of this matrix, we have:
<math display="block">
((id\otimes\psi^{*k})w)_{i_0i_{k+1}}
=\sum_{i_1\ldots i_k}M_{i_0i_1}\ldots M_{i_ki_{k+1}}
=(M^k)_{i_0i_{k+1}}
</math>
Thus we have the following formula, valid for any <math>k\in\mathbb N</math>:
<math display="block">
(id\otimes\psi^{*k})w=M^k
</math>
It follows that our Cesàro limit is given by the following formula:
<math display="block">
\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\psi^{*k}(f)
=\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\tau(M^k)
=\tau\left(\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^nM^k\right)
</math>
Now since <math>w</math> is unitary we have <math>||w||=1</math>, and so <math>||M||\leq1</math>. Thus the last Cesàro limit converges, and equals the orthogonal projection onto the <math>1</math>-eigenspace of <math>M</math>:
<math display="block">
\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^nM^k=P
</math>
Thus our initial Cesàro limit converges as well, to <math>\tau(P)</math>, as desired.}}
When the linear form <math>\psi\in C(G)^*</math> is faithful, we have the following finer result:
{{proofcard|Proposition|proposition-3|Given a faithful unital linear form <math>\psi\in C(G)^*</math>, the limit
<math display="block">
\int_\psi f=\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\psi^{*k}(f)
</math>
exists, and is independent of <math>\psi</math>, given on coefficients of representations by
<math display="block">
\left(id\otimes\int_\psi\right)w=P
</math>
where <math>P</math> is the orthogonal projection onto the space <math>Fix(w)=\left\{\xi\in\mathbb C^n\big|w\xi=\xi\right\}</math>.
|In view of Proposition 4.13, it remains to prove that when <math>\psi</math> is faithful, the <math>1</math>-eigenspace of the matrix <math>M=(id\otimes\psi)w</math> equals the space <math>Fix(w)</math>.
“<math>\supset</math>” This is clear, and for any <math>\psi</math>, because we have the following implication:
<math display="block">
w\xi=\xi\implies M\xi=\xi
</math>
“<math>\subset</math>” Here we must prove that, when <math>\psi</math> is faithful, we have:
<math display="block">
M\xi=\xi\implies w\xi=\xi
</math>
For this purpose, assume that we have <math>M\xi=\xi</math>, and consider the following function:
<math display="block">
f=\sum_i\left(\sum_jw_{ij}\xi_j-\xi_i\right)\left(\sum_kw_{ik}\xi_k-\xi_i\right)^*
</math>
We must prove that we have <math>f=0</math>. Since <math>v</math> is unitary, we have:
<math display="block">
\begin{eqnarray*}
f
&=&\sum_{ijk}w_{ij}w_{ik}^*\xi_j\bar{\xi}_k-\frac{1}{N}w_{ij}\xi_j\bar{\xi}_i-\frac{1}{N}w_{ik}^*\xi_i\bar{\xi}_k+\frac{1}{N^2}\xi_i\bar{\xi}_i\\
&=&\sum_j|\xi_j|^2-\sum_{ij}w_{ij}\xi_j\bar{\xi}_i-\sum_{ik}w_{ik}^*\xi_i\bar{\xi}_k+\sum_i|\xi_i|^2\\
&=&||\xi||^2- < w\xi,\xi > -\overline{ < w\xi,\xi > }+||\xi||^2\\
&=&2(||\xi||^2-Re( < w\xi,\xi > ))
\end{eqnarray*}
</math>
By using now our assumption <math>M\xi=\xi</math>, we obtain from this:
<math display="block">
\begin{eqnarray*}
\psi(f)
&=&2\psi(||\xi||^2-Re( < w\xi,\xi > ))\\
&=&2(||\xi||^2-Re( < M\xi,\xi > ))\\
&=&2(||\xi||^2-||\xi||^2)\\
&=&0
\end{eqnarray*}
</math>
Now since <math>\psi</math> is faithful, this gives <math>f=0</math>, and so <math>w\xi=\xi</math>, as claimed.}}
We can now formulate a main result, as follows:
{{proofcard|Theorem|theorem-1|Any compact group <math>G</math> has a unique Haar integration, which can be constructed by starting with any faithful positive unital form <math>\psi\in C(G)^*</math>, and setting:
<math display="block">
\int_G=\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\psi^{*k}
</math>
Moreover, for any representation <math>w</math> we have the formula
<math display="block">
\left(id\otimes\int_G\right)w=P
</math>
where <math>P</math> is the orthogonal projection onto <math>Fix(w)=\left\{\xi\in\mathbb C^n\big|w\xi=\xi\right\}</math>.
|Let us first go back to the general context of Proposition 4.13. Since convolving one more time with <math>\psi</math> will not change the Cesàro limit appearing there, the functional <math>\int_\psi\in C(G)^*</math> constructed there has the following invariance property:
<math display="block">
\int_\psi*\,\psi=\psi*\int_\psi=\int_\psi
</math>
In the case where <math>\psi</math> is assumed to be faithful, as in Proposition 4.14, our claim is that we have the following formula, valid this time for any <math>\varphi\in C(G)^*</math>:
<math display="block">
\int_\psi*\,\varphi=\varphi*\int_\psi=\varphi(1)\int_\psi
</math>
Indeed, it is enough to prove this formula on a coefficient of a corepresentation:
<math display="block">
f=(\tau\otimes id)w
</math>
In order to do so, consider the following two matrices:
<math display="block">
P=\left(id\otimes\int_\psi\right)w\quad,\quad
Q=(id\otimes\varphi)w
</math>
We have then the following formulae, which all follow from definitions:
<math display="block">
\left(\int_\psi*\,\varphi\right)f=\tau(PQ)\quad,\quad
\left(\varphi*\int_\psi\right)f=\tau(QP)\quad,\quad
\varphi(1)\int_\psi f=\varphi(1)\tau(P)
</math>
Thus, in order to prove our claim, it is enough to establish the following formula:
<math display="block">
PQ=QP=\psi(1)P
</math>
But this follows from the fact, that we know from Proposition 4.14, that <math>P=(id\otimes\int_\psi)w</math> is the orthogonal projection onto <math>Fix(w)</math>. Thus, we proved our claim. Now observe that, with <math>\Delta f(g\otimes h)=f(gh)</math>, this formula that we proved can be written as follows:
<math display="block">
\varphi\left(\int_\psi\otimes\,id\right)\Delta
=\varphi\left(id\otimes\int_\psi\right)\Delta
=\varphi\int_\psi(.)1
</math>
This formula being true for any <math>\varphi\in C(G)^*</math>, we can simply delete <math>\varphi</math>, and we conclude that <math>\int_G=\int_\psi</math> has the required left and right invariance property, namely:
<math display="block">
\left(\int_G\otimes\,id\right)\Delta
=\left(id\otimes\int_G\right)\Delta
=\int_G(.)1
</math>
Finally, the uniqueness is clear as well, because if we have two invariant integrals <math>\int_G,\int_G'</math>, then their convolution equals on one hand <math>\int_G</math>, and on the other hand, <math>\int_G'</math>.}}
Summarizing, we know how to integrate over <math>G</math>. Before getting into probabilistic applications, let us develop however more Peter-Weyl theory. We will need:
{{proofcard|Proposition|proposition-4|We have a Frobenius type isomorphism
<math display="block">
Hom(v,w)\simeq Fix(v\otimes\bar{w})
</math>
valid for any two representations <math>v,w</math>.
|According to definitions, we have the following equivalences:
<math display="block">
\begin{eqnarray*}
T\in Hom(v,w)
&\iff&Tv=wT\\
&\iff&\sum_iT_{ai}v_{ij}=\sum_bw_{ab}T_{bj},\forall a,j
\end{eqnarray*}
</math>
On the other hand, we have as well the following equivalences:
<math display="block">
\begin{eqnarray*}
T\in Fix(v\otimes\bar{w})
&\iff&(v\otimes\bar{w})T=\xi\\
&\iff&\sum_{bi}v_{ji}\bar{w}_{ab}T_{bi}=T_{aj}\forall a,j
\end{eqnarray*}
</math>
With these formulae in hand, both inclusions follow from the unitarity of <math>v,w</math>.}}
We can now formulate a third Peter-Weyl theorem, as follows:
{{proofcard|Theorem (Peter-Weyl 3)|theorem-2|The dense subalgebra <math>\mathcal C(G)\subset C(G)</math> generated by the coefficients of the fundamental representation decomposes as a direct sum
<math display="block">
\mathcal C(G)=\bigoplus_{w\in Irr(G)}M_{\dim(w)}(\mathbb C)
</math>
with the summands being pairwise orthogonal with respect to the scalar product
<math display="block">
< f,g > =\int_Gf\bar{g}
</math>
where <math>\int_G</math> is the Haar integration over <math>G</math>.
|By combining the previous two Peter-Weyl results, Theorems 4.10 and 4.11, we deduce that we have a linear space decomposition as follows:
<math display="block">
\mathcal C(G)
=\sum_{w\in Irr(G)}C_w
=\sum_{w\in Irr(G)}M_{\dim(w)}(\mathbb C)
</math>
Thus, in order to conclude, it is enough to prove that for any two irreducible representations <math>v,w\in Irr(G)</math>, the corresponding spaces of coefficients are orthogonal:
<math display="block">
v\not\sim w\implies C_v\perp C_w
</math>
But this follows from Theorem 4.15, via Proposition 4.16. Let us set indeed:
<math display="block">
P_{ia,jb}=\int_Gv_{ij}\bar{w}_{ab}
</math>
Then <math>P</math> is the orthogonal projection onto the following vector space:
<math display="block">
Fix(v\otimes\bar{w})
\simeq Hom(v,w)
=\{0\}
</math>
Thus we have <math>P=0</math>, and this gives the result.}}
Finally, we have the following result, completing the Peter-Weyl theory:
{{proofcard|Theorem (Peter-Weyl 4)|theorem-3|The characters of irreducible representations belong to the algebra
<math display="block">
\mathcal C(G)_{central}=\left\{f\in\mathcal C(G)\Big|f(gh)=f(hg),\forall g,h\in G\right\}
</math>
called algebra of central functions on <math>G</math>, and form an orthonormal basis of it.
|Observe first that <math>\mathcal C(G)_{central}</math> is indeed an algebra, which contains all the characters. Conversely, consider a function <math>f\in\mathcal C(G)</math>, written as follows:
<math display="block">
f=\sum_{w\in Irr(G)}f_w
</math>
The condition <math>f\in\mathcal C(G)_{central}</math> states then that for any <math>w\in Irr(G)</math>, we must have:
<math display="block">
f_w\in\mathcal C(G)_{central}
</math>
But this means that <math>f_w</math> must be a scalar multiple of <math>\chi_w</math>, so the characters form a basis of <math>\mathcal C(G)_{central}</math>, as stated. Also, the fact that we have an orthogonal basis follows from Theorem 4.17. As for the fact that the characters have norm 1, this follows from:
<math display="block">
\int_G\chi_w\bar{\chi}_w
=\sum_{ij}\int_Gw_{ii}\bar{w}_{jj}
=\sum_i\frac{1}{M}
=1
</math>
Here we have used the fact, coming from Theorem 4.15 and Proposition 4.16, that the integrals <math>\int_Gw_{ij}\bar{w}_{kl}</math> form the orthogonal projection onto the following vector space:
<math display="block">
Fix(w\otimes\bar{w})\simeq End(w)=\mathbb C1
</math>
Thus, the proof of our theorem is now complete.}}
==General references==
{{cite arXiv|last1=Banica|first1=Teo|year=2024|title=Calculus and applications|eprint=2401.00911|class=math.CO}}

Latest revision as of 19:38, 21 April 2025

[math] \newcommand{\mathds}{\mathbb}[/math]

This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.

In order to further advance with Peter-Weyl theory, we need to talk about integration over [math]G[/math]. In the finite group case the situation is trivial, as follows:

Proposition

Any finite group [math]G[/math] has a unique probability measure which is invariant under left and right translations,

[[math]] \mu(E)=\mu(gE)=\mu(Eg) [[/math]]
and this is the normalized counting measure on [math]G[/math], given by [math]\mu(E)=|E|/|G|[/math].


Show Proof

This is indeed something trivial, which follows from definitions.

In the general, continuous case, let us begin with the following key result:

Proposition

Given a unital positive linear form [math]\psi:C(G)\to\mathbb C[/math], the limit

[[math]] \int_\varphi f=\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\psi^{*k}(f) [[/math]]
exists, and for a coefficient of a representation [math]f=(\tau\otimes id)w[/math] we have

[[math]] \int_\varphi f=\tau(P) [[/math]]
where [math]P[/math] is the orthogonal projection onto the [math]1[/math]-eigenspace of [math](id\otimes\psi)w[/math].


Show Proof

By linearity it is enough to prove the first assertion for functions of the following type, where [math]w[/math] is a Peter-Weyl representation, and [math]\tau[/math] is a linear form:

[[math]] f=(\tau\otimes id)w [[/math]]


Thus we are led into the second assertion, and more precisely we can have the whole result proved if we can establish the following formula, with [math]f=(\tau\otimes id)w[/math]:

[[math]] \lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\psi^{*k}(f)=\tau(P) [[/math]]


In order to prove this latter formula, observe that we have:

[[math]] \psi^{*k}(f) =(\tau\otimes\psi^{*k})w =\tau((id\otimes\psi^{*k})w) [[/math]]


Let us set [math]M=(id\otimes\psi)w[/math]. In terms of this matrix, we have:

[[math]] ((id\otimes\psi^{*k})w)_{i_0i_{k+1}} =\sum_{i_1\ldots i_k}M_{i_0i_1}\ldots M_{i_ki_{k+1}} =(M^k)_{i_0i_{k+1}} [[/math]]


Thus we have the following formula, valid for any [math]k\in\mathbb N[/math]:

[[math]] (id\otimes\psi^{*k})w=M^k [[/math]]


It follows that our Cesàro limit is given by the following formula:

[[math]] \lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\psi^{*k}(f) =\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\tau(M^k) =\tau\left(\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^nM^k\right) [[/math]]


Now since [math]w[/math] is unitary we have [math]||w||=1[/math], and so [math]||M||\leq1[/math]. Thus the last Cesàro limit converges, and equals the orthogonal projection onto the [math]1[/math]-eigenspace of [math]M[/math]:

[[math]] \lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^nM^k=P [[/math]]


Thus our initial Cesàro limit converges as well, to [math]\tau(P)[/math], as desired.

When the linear form [math]\psi\in C(G)^*[/math] is faithful, we have the following finer result:

Proposition

Given a faithful unital linear form [math]\psi\in C(G)^*[/math], the limit

[[math]] \int_\psi f=\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\psi^{*k}(f) [[/math]]
exists, and is independent of [math]\psi[/math], given on coefficients of representations by

[[math]] \left(id\otimes\int_\psi\right)w=P [[/math]]
where [math]P[/math] is the orthogonal projection onto the space [math]Fix(w)=\left\{\xi\in\mathbb C^n\big|w\xi=\xi\right\}[/math].


Show Proof

In view of Proposition 4.13, it remains to prove that when [math]\psi[/math] is faithful, the [math]1[/math]-eigenspace of the matrix [math]M=(id\otimes\psi)w[/math] equals the space [math]Fix(w)[/math].


[math]\supset[/math]” This is clear, and for any [math]\psi[/math], because we have the following implication:

[[math]] w\xi=\xi\implies M\xi=\xi [[/math]]


[math]\subset[/math]” Here we must prove that, when [math]\psi[/math] is faithful, we have:

[[math]] M\xi=\xi\implies w\xi=\xi [[/math]]


For this purpose, assume that we have [math]M\xi=\xi[/math], and consider the following function:

[[math]] f=\sum_i\left(\sum_jw_{ij}\xi_j-\xi_i\right)\left(\sum_kw_{ik}\xi_k-\xi_i\right)^* [[/math]]


We must prove that we have [math]f=0[/math]. Since [math]v[/math] is unitary, we have:

[[math]] \begin{eqnarray*} f &=&\sum_{ijk}w_{ij}w_{ik}^*\xi_j\bar{\xi}_k-\frac{1}{N}w_{ij}\xi_j\bar{\xi}_i-\frac{1}{N}w_{ik}^*\xi_i\bar{\xi}_k+\frac{1}{N^2}\xi_i\bar{\xi}_i\\ &=&\sum_j|\xi_j|^2-\sum_{ij}w_{ij}\xi_j\bar{\xi}_i-\sum_{ik}w_{ik}^*\xi_i\bar{\xi}_k+\sum_i|\xi_i|^2\\ &=&||\xi||^2- \lt w\xi,\xi \gt -\overline{ \lt w\xi,\xi \gt }+||\xi||^2\\ &=&2(||\xi||^2-Re( \lt w\xi,\xi \gt )) \end{eqnarray*} [[/math]]


By using now our assumption [math]M\xi=\xi[/math], we obtain from this:

[[math]] \begin{eqnarray*} \psi(f) &=&2\psi(||\xi||^2-Re( \lt w\xi,\xi \gt ))\\ &=&2(||\xi||^2-Re( \lt M\xi,\xi \gt ))\\ &=&2(||\xi||^2-||\xi||^2)\\ &=&0 \end{eqnarray*} [[/math]]


Now since [math]\psi[/math] is faithful, this gives [math]f=0[/math], and so [math]w\xi=\xi[/math], as claimed.

We can now formulate a main result, as follows:

Theorem

Any compact group [math]G[/math] has a unique Haar integration, which can be constructed by starting with any faithful positive unital form [math]\psi\in C(G)^*[/math], and setting:

[[math]] \int_G=\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\psi^{*k} [[/math]]
Moreover, for any representation [math]w[/math] we have the formula

[[math]] \left(id\otimes\int_G\right)w=P [[/math]]
where [math]P[/math] is the orthogonal projection onto [math]Fix(w)=\left\{\xi\in\mathbb C^n\big|w\xi=\xi\right\}[/math].


Show Proof

Let us first go back to the general context of Proposition 4.13. Since convolving one more time with [math]\psi[/math] will not change the Cesàro limit appearing there, the functional [math]\int_\psi\in C(G)^*[/math] constructed there has the following invariance property:

[[math]] \int_\psi*\,\psi=\psi*\int_\psi=\int_\psi [[/math]]


In the case where [math]\psi[/math] is assumed to be faithful, as in Proposition 4.14, our claim is that we have the following formula, valid this time for any [math]\varphi\in C(G)^*[/math]:

[[math]] \int_\psi*\,\varphi=\varphi*\int_\psi=\varphi(1)\int_\psi [[/math]]


Indeed, it is enough to prove this formula on a coefficient of a corepresentation:

[[math]] f=(\tau\otimes id)w [[/math]]


In order to do so, consider the following two matrices:

[[math]] P=\left(id\otimes\int_\psi\right)w\quad,\quad Q=(id\otimes\varphi)w [[/math]]


We have then the following formulae, which all follow from definitions:

[[math]] \left(\int_\psi*\,\varphi\right)f=\tau(PQ)\quad,\quad \left(\varphi*\int_\psi\right)f=\tau(QP)\quad,\quad \varphi(1)\int_\psi f=\varphi(1)\tau(P) [[/math]]


Thus, in order to prove our claim, it is enough to establish the following formula:

[[math]] PQ=QP=\psi(1)P [[/math]]


But this follows from the fact, that we know from Proposition 4.14, that [math]P=(id\otimes\int_\psi)w[/math] is the orthogonal projection onto [math]Fix(w)[/math]. Thus, we proved our claim. Now observe that, with [math]\Delta f(g\otimes h)=f(gh)[/math], this formula that we proved can be written as follows:

[[math]] \varphi\left(\int_\psi\otimes\,id\right)\Delta =\varphi\left(id\otimes\int_\psi\right)\Delta =\varphi\int_\psi(.)1 [[/math]]


This formula being true for any [math]\varphi\in C(G)^*[/math], we can simply delete [math]\varphi[/math], and we conclude that [math]\int_G=\int_\psi[/math] has the required left and right invariance property, namely:

[[math]] \left(\int_G\otimes\,id\right)\Delta =\left(id\otimes\int_G\right)\Delta =\int_G(.)1 [[/math]]


Finally, the uniqueness is clear as well, because if we have two invariant integrals [math]\int_G,\int_G'[/math], then their convolution equals on one hand [math]\int_G[/math], and on the other hand, [math]\int_G'[/math].

Summarizing, we know how to integrate over [math]G[/math]. Before getting into probabilistic applications, let us develop however more Peter-Weyl theory. We will need:

Proposition

We have a Frobenius type isomorphism

[[math]] Hom(v,w)\simeq Fix(v\otimes\bar{w}) [[/math]]
valid for any two representations [math]v,w[/math].


Show Proof

According to definitions, we have the following equivalences:

[[math]] \begin{eqnarray*} T\in Hom(v,w) &\iff&Tv=wT\\ &\iff&\sum_iT_{ai}v_{ij}=\sum_bw_{ab}T_{bj},\forall a,j \end{eqnarray*} [[/math]]


On the other hand, we have as well the following equivalences:

[[math]] \begin{eqnarray*} T\in Fix(v\otimes\bar{w}) &\iff&(v\otimes\bar{w})T=\xi\\ &\iff&\sum_{bi}v_{ji}\bar{w}_{ab}T_{bi}=T_{aj}\forall a,j \end{eqnarray*} [[/math]]


With these formulae in hand, both inclusions follow from the unitarity of [math]v,w[/math].

We can now formulate a third Peter-Weyl theorem, as follows:

Theorem (Peter-Weyl 3)

The dense subalgebra [math]\mathcal C(G)\subset C(G)[/math] generated by the coefficients of the fundamental representation decomposes as a direct sum

[[math]] \mathcal C(G)=\bigoplus_{w\in Irr(G)}M_{\dim(w)}(\mathbb C) [[/math]]
with the summands being pairwise orthogonal with respect to the scalar product

[[math]] \lt f,g \gt =\int_Gf\bar{g} [[/math]]
where [math]\int_G[/math] is the Haar integration over [math]G[/math].


Show Proof

By combining the previous two Peter-Weyl results, Theorems 4.10 and 4.11, we deduce that we have a linear space decomposition as follows:

[[math]] \mathcal C(G) =\sum_{w\in Irr(G)}C_w =\sum_{w\in Irr(G)}M_{\dim(w)}(\mathbb C) [[/math]]


Thus, in order to conclude, it is enough to prove that for any two irreducible representations [math]v,w\in Irr(G)[/math], the corresponding spaces of coefficients are orthogonal:

[[math]] v\not\sim w\implies C_v\perp C_w [[/math]]

But this follows from Theorem 4.15, via Proposition 4.16. Let us set indeed:

[[math]] P_{ia,jb}=\int_Gv_{ij}\bar{w}_{ab} [[/math]]


Then [math]P[/math] is the orthogonal projection onto the following vector space:

[[math]] Fix(v\otimes\bar{w}) \simeq Hom(v,w) =\{0\} [[/math]]


Thus we have [math]P=0[/math], and this gives the result.

Finally, we have the following result, completing the Peter-Weyl theory:

Theorem (Peter-Weyl 4)

The characters of irreducible representations belong to the algebra

[[math]] \mathcal C(G)_{central}=\left\{f\in\mathcal C(G)\Big|f(gh)=f(hg),\forall g,h\in G\right\} [[/math]]
called algebra of central functions on [math]G[/math], and form an orthonormal basis of it.


Show Proof

Observe first that [math]\mathcal C(G)_{central}[/math] is indeed an algebra, which contains all the characters. Conversely, consider a function [math]f\in\mathcal C(G)[/math], written as follows:

[[math]] f=\sum_{w\in Irr(G)}f_w [[/math]]


The condition [math]f\in\mathcal C(G)_{central}[/math] states then that for any [math]w\in Irr(G)[/math], we must have:

[[math]] f_w\in\mathcal C(G)_{central} [[/math]]


But this means that [math]f_w[/math] must be a scalar multiple of [math]\chi_w[/math], so the characters form a basis of [math]\mathcal C(G)_{central}[/math], as stated. Also, the fact that we have an orthogonal basis follows from Theorem 4.17. As for the fact that the characters have norm 1, this follows from:

[[math]] \int_G\chi_w\bar{\chi}_w =\sum_{ij}\int_Gw_{ii}\bar{w}_{jj} =\sum_i\frac{1}{M} =1 [[/math]]


Here we have used the fact, coming from Theorem 4.15 and Proposition 4.16, that the integrals [math]\int_Gw_{ij}\bar{w}_{kl}[/math] form the orthogonal projection onto the following vector space:

[[math]] Fix(w\otimes\bar{w})\simeq End(w)=\mathbb C1 [[/math]]


Thus, the proof of our theorem is now complete.

General references

Banica, Teo (2024). "Calculus and applications". arXiv:2401.00911 [math.CO].