excans:Bcc854b3ae: Difference between revisions

From Stochiki
mNo edit summary
m (Added youtube link)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
'''Solution: A'''
'''Solution: A'''


We have <math display = "block">P(T>6|T>3) = \frac{P(T>6)}{P(T>3)}</math>. However, <math>T</math> has a geometric distribution with <math>P(T=k) = (5/6)^{k-1}(1/6) </math> which means that  
We have <math display = "block">P(T>6|T>3) = \frac{P(T>6)}{P(T>3)}</math>. However, <math>T</math> has distribution <math>P(T=k) = (5/6)^{k-1}(1/6) </math> which means that  


<math display = "block">
<math display = "block">
\frac{P(T>6)}{P(T>3)} = \frac{\sum_{k\geq 7} (5/6)^{k-1}}{\sum_{k \geq 4} (5/6)^{k-1}} = \frac{(5/6)^6}{(5/6)^3} = (5/6)^3 = 0.5787.  
\frac{P(T>6)}{P(T>3)} = \frac{\sum_{k\geq 7} (5/6)^{k-1}}{\sum_{k \geq 4} (5/6)^{k-1}} = \frac{(5/6)^6}{(5/6)^3} = (5/6)^3 = 0.5787.  
</math>
</math>
<div class="text-center  mt-5">
<youtube>rblPU1vcxj8</youtube>
</div>

Latest revision as of 20:47, 31 March 2025

Solution: A

We have

[[math]]P(T\gt6|T\gt3) = \frac{P(T\gt6)}{P(T\gt3)}[[/math]]

. However, [math]T[/math] has distribution [math]P(T=k) = (5/6)^{k-1}(1/6) [/math] which means that

[[math]] \frac{P(T\gt6)}{P(T\gt3)} = \frac{\sum_{k\geq 7} (5/6)^{k-1}}{\sum_{k \geq 4} (5/6)^{k-1}} = \frac{(5/6)^6}{(5/6)^3} = (5/6)^3 = 0.5787. [[/math]]