⧼exchistory⧽
5 exercise(s) shown, 0 hidden
Apr 20'25
[math] \newcommand{\mathds}{\mathbb}[/math]

Compute the easy envelope of the general complex reflection groups

[[math]] H_N^{sd}=\left\{U\in H_N^s\Big|(\det U)^d=1\right\} [[/math]]

and of other closed subgroups of [math]U_N[/math] that you know, that are not easy.

Apr 20'25
[math] \newcommand{\mathds}{\mathbb}[/math]

Work out the super-easiness property of the symplectic group

[[math]] Sp_N\subset U_N [[/math]]

defined for [math]N\in\mathbb N[/math] even, then try as well the groups [math]SU_2[/math] and [math]SO_3[/math].

Apr 20'25
[math] \newcommand{\mathds}{\mathbb}[/math]

Prove that when lifting the uniformity assumption, the groups

[[math]] \xymatrix@R=50pt@C=50pt{ B_N\ar[r]&B_N'\ar[r]&O_N\\ S_N\ar[u]\ar[r]&S_N'\ar[u]\ar[r]&H_N\ar[u]} [[/math]]

with the convention [math]G_N'=G_N\times\mathbb Z_2[/math], are the only easy real groups.

Apr 20'25
[math] \newcommand{\mathds}{\mathbb}[/math]

Prove that the uniform, purely unitary easy groups are

[[math]] \xymatrix@R=50pt@C=50pt{ C_N\ar[r]&U_N\\ S_N\ar[u]\ar[r]&K_N\ar[u]} [[/math]]

with a suitable definition for the notion of pure unitarity.

Apr 20'25
[math] \newcommand{\mathds}{\mathbb}[/math]

Learn a bit about quantum groups, and about easy quantum groups, as to understand the definition of the main [math]8[/math] easy quantum groups, namely

[[math]] \xymatrix@R=20pt@C=20pt{ &K_N^+\ar[rr]&&U_N^+\\ H_N^+\ar[rr]\ar[ur]&&O_N^+\ar[ur]\\ &K_N\ar[rr]\ar[uu]&&U_N\ar[uu]\\ H_N\ar[uu]\ar[ur]\ar[rr]&&O_N\ar[uu]\ar[ur] } [[/math]]

and the Ground Zero theorem in quantum groups, stating that under suitable, strong combinatorial assumptions, these are the only [math]8[/math] quantum groups.