⧼exchistory⧽
4 exercise(s) shown, 0 hidden
BBot
Apr 20'25
[math]
\newcommand{\mathds}{\mathbb}[/math]
Work out all the details of the Euler-Rodrigues formula, by using the fact that any rotation in [math]\mathbb R^3[/math] has a rotation axis.
BBot
Apr 20'25
[math]
\newcommand{\mathds}{\mathbb}[/math]
Work out the theory of the subgroups of [math]O_N,U_N[/math] constructed via
[[math]]
(\det U)^d=1
[[/math]]
with [math]d\in\mathbb N\cup\{\infty\}[/math], which generalize both [math]O_N,U_N[/math] and [math]SO_N,SU_N[/math].
BBot
Apr 20'25
[math]
\newcommand{\mathds}{\mathbb}[/math]
Look up the literature, and find the relevance of the symplectic groups, and of symplectic geometry in general, to questions in classical mechanics.
BBot
Apr 20'25
[math]
\newcommand{\mathds}{\mathbb}[/math]
Find and then write down a brief account of the Shephard-Todd theorem, stating that the irreducible complex reflection groups are
[[math]]
H_N^{sd}=\left\{U\in H_N^s\Big|(\det U)^d=1\right\}
[[/math]]
along with a number of exceptional examples, more precisely [math]34[/math] of them.