⧼exchistory⧽
4 exercise(s) shown, 0 hidden
Apr 20'25
[math] \newcommand{\mathds}{\mathbb}[/math]

Work out all the details of the Euler-Rodrigues formula, by using the fact that any rotation in [math]\mathbb R^3[/math] has a rotation axis.

Apr 20'25
[math] \newcommand{\mathds}{\mathbb}[/math]

Work out the theory of the subgroups of [math]O_N,U_N[/math] constructed via

[[math]] (\det U)^d=1 [[/math]]

with [math]d\in\mathbb N\cup\{\infty\}[/math], which generalize both [math]O_N,U_N[/math] and [math]SO_N,SU_N[/math].

Apr 20'25
[math] \newcommand{\mathds}{\mathbb}[/math]

Look up the literature, and find the relevance of the symplectic groups, and of symplectic geometry in general, to questions in classical mechanics.

Apr 20'25
[math] \newcommand{\mathds}{\mathbb}[/math]

Find and then write down a brief account of the Shephard-Todd theorem, stating that the irreducible complex reflection groups are

[[math]] H_N^{sd}=\left\{U\in H_N^s\Big|(\det U)^d=1\right\} [[/math]]

along with a number of exceptional examples, more precisely [math]34[/math] of them.