⧼exchistory⧽
5 exercise(s) shown, 0 hidden
Apr 22'25
[math] \newcommand{\mathds}{\mathbb}[/math]

This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.

Establish the Möbius inversion formula, namely

[[math]] f(\sigma)=\sum_{\pi\leq\sigma}g(\pi) \quad\implies\quad g(\sigma)=\sum_{\pi\leq\sigma}\mu(\pi,\sigma)f(\pi) [[/math]]

for the functions on [math]P(p)[/math].

Apr 22'25
[math] \newcommand{\mathds}{\mathbb}[/math]

This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.

Prove that the inverse of the adjacency matrix of [math]P(k)[/math], given by

[[math]] A_k(\pi,\sigma)=\begin{cases} 1&{\rm if}\ \pi\leq\sigma\\ 0&{\rm if}\ \pi\not\leq\sigma \end{cases} [[/math]]

is the Möbius matrix of [math]P[/math], given by [math]M_k(\pi,\sigma)=\mu(\pi,\sigma)[/math].

Apr 22'25
[math] \newcommand{\mathds}{\mathbb}[/math]

This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.

Prove that given independent normal variables [math]x,y[/math], by setting

[[math]] z=\frac{1}{\sqrt{2}}(x+iy) [[/math]]

the even moments of the variable [math]|z|[/math] are given by the formula [math]\mathbb E(|z|^{2p})=p![/math].

Apr 22'25
[math] \newcommand{\mathds}{\mathbb}[/math]

This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.

Establish the following formulae,

[[math]] F_{ix}F_{iy}=F_{i,x+y}\quad,\quad \overline{F}_{ix}=F_{i,-x}\quad,\quad \sum_xF_{ix}=N\delta_{i0} [[/math]]

valid for any generalized Fourier matrix, [math]F=F_G[/math].

Apr 22'25
[math] \newcommand{\mathds}{\mathbb}[/math]

This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.

Compute the glow of the Walsh matrices

[[math]] W_N=F_2^{\otimes n} [[/math]]

with [math]N=2^n[/math], and check if this glow is polynomial or not in [math]N[/math].