⧼exchistory⧽
5 exercise(s) shown, 0 hidden
Apr 20'25
[math] \newcommand{\mathds}{\mathbb}[/math]

Work out the geometric interpretation of the map [math]f(x)=Ax[/math], with

[[math]] A\in M_2(\pm1) [[/math]]

and then discuss as well the diagonalization of these matrices.

Apr 20'25
[math] \newcommand{\mathds}{\mathbb}[/math]

Diagonalize explicitely the third flat matrix, namely

[[math]] \mathbb I_3 =\begin{pmatrix}1&1&1\\1&1&1\\1&1&1\end{pmatrix} [[/math]]

and then study as well the general case, that of the matrix [math]\mathbb I_N[/math].

Apr 20'25
[math] \newcommand{\mathds}{\mathbb}[/math]

Work out the trigonometry formulae

[[math]] \sin(2t)=2\sin t\cos t\quad,\quad \cos(2t)=2\cos^2t-1 [[/math]]

by using elementary methods, coming from plane geometry.

Apr 20'25
[math] \newcommand{\mathds}{\mathbb}[/math]

Prove that the isometries in [math]2[/math] dimensions are either rotations, or symmetries, as to complete the proof of Theorem 1.40.

Apr 20'25
[math] \newcommand{\mathds}{\mathbb}[/math]

Develop a theory of angles between the vectors [math]x,y\in\mathbb R^N[/math], by using the well-known formula

[[math]] \lt x,y \gt =||x||\cdot||y||\cdot\cos t [[/math]]

that you should by the way fully understand first, in [math]N=2[/math] dimensions.