⧼exchistory⧽
3 exercise(s) shown, 0 hidden
BBot
Apr 22'25
[math]
\newcommand{\mathds}{\mathbb}[/math]
This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.
Prove that the orthogonal easy groups are
[[math]]
\xymatrix@R=30pt@C=80pt{
H_N\ar[r]&O_N\\
S_N'\ar[u]&B_N'\ar[u]\\
S_N\ar[r]\ar[u]&B_N\ar[u]}
[[/math]]
where [math]S_N'=S_N\times\mathbb Z_2[/math] and [math]B_N'=B_N\times\mathbb Z_2[/math].
BBot
Apr 22'25
[math]
\newcommand{\mathds}{\mathbb}[/math]
This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.
Find two distinct easy liberations
[[math]]
B_N'^+\subset B_N''^+
[[/math]]
of the group [math]B_N'=B_N\times\mathbb Z_2[/math].
BBot
Apr 22'25
[math]
\newcommand{\mathds}{\mathbb}[/math]
This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.
Prove that the orthogonal easy free quantum groups are
[[math]]
\xymatrix@R=1pt@C=100pt{
H_N^+\ar[r]&O_N^+\\
\ &\\
\ &\\
&B_N''^+\ar[uuu]\\
S_N'^+\ar[uuuu]&\\
&B_N'^+\ar[uu]\\
\ &\\
\ &\\
S_N^+\ar[r]\ar[uuuu]&B_N^+\ar[uuu]}
[[/math]]
where [math]S_N'^+=S_N^+\times\mathbb Z_2[/math], and where [math]B_N'^+\subset B_N''^+[/math] are easy liberations of [math]B_N'=B_N\times\mathbb Z_2[/math].