⧼exchistory⧽
3 exercise(s) shown, 0 hidden
Apr 22'25
[math] \newcommand{\mathds}{\mathbb}[/math]

This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.

Prove that the orthogonal easy groups are

[[math]] \xymatrix@R=30pt@C=80pt{ H_N\ar[r]&O_N\\ S_N'\ar[u]&B_N'\ar[u]\\ S_N\ar[r]\ar[u]&B_N\ar[u]} [[/math]]

where [math]S_N'=S_N\times\mathbb Z_2[/math] and [math]B_N'=B_N\times\mathbb Z_2[/math].

Apr 22'25
[math] \newcommand{\mathds}{\mathbb}[/math]

This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.

Find two distinct easy liberations

[[math]] B_N'^+\subset B_N''^+ [[/math]]

of the group [math]B_N'=B_N\times\mathbb Z_2[/math].

Apr 22'25
[math] \newcommand{\mathds}{\mathbb}[/math]

This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.

Prove that the orthogonal easy free quantum groups are

[[math]] \xymatrix@R=1pt@C=100pt{ H_N^+\ar[r]&O_N^+\\ \ &\\ \ &\\ &B_N''^+\ar[uuu]\\ S_N'^+\ar[uuuu]&\\ &B_N'^+\ar[uu]\\ \ &\\ \ &\\ S_N^+\ar[r]\ar[uuuu]&B_N^+\ar[uuu]} [[/math]]

where [math]S_N'^+=S_N^+\times\mathbb Z_2[/math], and where [math]B_N'^+\subset B_N''^+[/math] are easy liberations of [math]B_N'=B_N\times\mathbb Z_2[/math].