⧼exchistory⧽
6 exercise(s) shown, 0 hidden
Apr 22'25
[math] \newcommand{\mathds}{\mathbb}[/math]

This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.

Verify the Gram determinant formula for [math]P(3)[/math] explicitly, without any trick, just by computing the [math]5\times5[/math] determinant.

Apr 22'25
[math] \newcommand{\mathds}{\mathbb}[/math]

This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.

Establish the following formula,

[[math]] \int_0^{\pi/2}\cos^pt\,dt=\int_0^{\pi/2}\sin^pt\,dt=\left(\frac{\pi}{2}\right)^{\varepsilon(p)}\frac{p!!}{(p+1)!!} [[/math]]

where [math]\varepsilon(p)=1[/math] if [math]p[/math] is even, and [math]\varepsilon(p)=0[/math] if [math]p[/math] is odd.

Apr 22'25
[math] \newcommand{\mathds}{\mathbb}[/math]

This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.

Establish the following formula, that we used in the above,

[[math]] \int_0^{\pi/2}\cos^pt\sin^qt\,dt=\left(\frac{\pi}{2}\right)^{\varepsilon(p)\varepsilon(q)}\frac{p!!q!!}{(p+q+1)!!} [[/math]]

where [math]\varepsilon(p)=1[/math] if [math]p[/math] is even, and [math]\varepsilon(p)=0[/math] if [math]p[/math] is odd, as before.

Apr 22'25
[math] \newcommand{\mathds}{\mathbb}[/math]

This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.

Establish the following integration formula over the sphere,

[[math]] \int_{S^{N-1}_\mathbb R}x_1^{k_1}\ldots x_N^{k_N}\,dx=\frac{(N-1)!!k_1!!\ldots k_N!!}{(N+\Sigma k_i-1)!!} [[/math]]

that we used in the above, by using spherical coordinates and Fubini.

Apr 22'25
[math] \newcommand{\mathds}{\mathbb}[/math]

This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.

Learn and use the Stieltjes inversion formula, namely

[[math]] d\mu (x)=\lim_{t\searrow 0}-\frac{1}{\pi}\,Im\left(G(x+it)\right)\cdot dx [[/math]]

in order to find the centered laws having as [math]2k[/math]-th moments the numbers [math](2k)!![/math] and [math]C_k[/math].

Apr 22'25
[math] \newcommand{\mathds}{\mathbb}[/math]

This article was automatically generated from a tex file and may contain conversion errors. If permitted, you may login and edit this article to improve the conversion.

Write down a complete proof, using a method of your choice, found here or somewhere else, for the classification of the irreducible representations of [math]SU_2[/math].