⧼exchistory⧽
To view all exercises, please subscribe to guide
35 exercise(s) shown, 16 hidden

A loss variable [math]L[/math] has a density function that is proportional to

[[math]] x^{\alpha -1}e^{-x/\theta}. [[/math]]

The parameters [math]\theta [/math] and [math]\alpha [/math] are random with the following joint distribution

[math]\alpha = 1 [/math] [math]\alpha = 2[/math]
[math]\theta = 500 [/math] 0.25 0.35
[math]\theta = 1000 [/math] 0.15 0.25

Determine the standard deviation of [math]L[/math] to the nearest integer.

  • 298
  • 1,088
  • 1,220
  • 1,279
  • 1,565
  • Created by Admin, Jun 02'22

The joint density function for the random variables [math]X,Y [/math] equals

[[math]] f_{X,Y}(x,y) = \begin{cases} cxy^3, y^2 \lt x \lt y, 0 \lt y \lt 1 \\ 0, \, \textrm{Otherwise} \end{cases} [[/math]]

for a constant [math]c[/math]. Determine the marginal density of [math]2Y^{1/2}[/math] given [math]X=1/2[/math].

  • [[math]] g(z)= \begin{cases} \frac{z^7}{6}, \sqrt{2} \lt z \lt 2^{3/4} \\ 0, \, \textrm{Otherwise} \end{cases} [[/math]]
  • [[math]] g(z)= \begin{cases} \frac{64z^3}{3}, \frac{1}{2} \lt z \lt \frac{1}{\sqrt{2}} \\ 0, \, \textrm{Otherwise} \end{cases} [[/math]]
  • [[math]] g(z)= \begin{cases} z^3, \sqrt{2} \lt z \lt 2^{3/4} \\ 0, \, \textrm{Otherwise} \end{cases} [[/math]]
  • [[math]] g(z)= \begin{cases} \frac{255z^7}{1688}, \frac{1}{2} \lt z \lt \frac{1}{\sqrt{2}} \\ 0, \, \textrm{Otherwise} \end{cases} [[/math]]
  • [[math]] g(z)= \begin{cases} \frac{2^{7/2}z^{5/2}}{5}, 0 \lt z \lt 2 \\ 0, \, \textrm{Otherwise} \end{cases} [[/math]]
  • Created by Admin, Jun 02'22

The loss in year 1, [math]X[/math], has probability density function

[[math]] f(x) = \begin{cases} \frac{\alpha \theta^{\alpha}}{(x+\theta)^{\alpha +1}}, x \geq 0 \\ 0, x \lt 0 \end{cases} [[/math]]

A deductible equalling the loss in year 1 is applicable in year 2. If the loss in year 2, with deductible in effect, equals [math]Y[/math], determine the joint density function for [math]X,Y[/math].

  • [[math]] \begin{align*} f_{X,Y}(x,y) &= \begin{cases} \frac{\alpha^2\theta^{\alpha}}{(x+\theta)(y + x + \theta)^{\alpha + 1}}, y \gt 0, x \gt 0 \\ 0, \, \textrm{Otherwise} \end{cases} \\ \end{align*} [[/math]]
  • [[math]] \begin{align*} f_{X,Y}(x,y) &= \begin{cases} \frac{\alpha^2}{(x+\theta)(y + x + \theta)^{\alpha + 1}}, y \gt 0, x \gt 0 \\ 0, \, \textrm{Otherwise} \end{cases} \\ \end{align*} [[/math]]
  • [[math]] \begin{align*} f_{X,Y}(x,y) &= \begin{cases} \frac{\alpha^2\theta^{\alpha}}{(y + x + \theta)^{\alpha + 1}}, y \gt 0, x \gt 0 \\ 0, \, \textrm{Otherwise} \end{cases} \\ \end{align*} [[/math]]
  • [[math]] \begin{align*} f_{X,Y}(x,y) &= \begin{cases} \frac{\alpha^2\theta^{\alpha}}{(x+\theta)(y + x + \theta)^{\alpha}}, y \gt 0, x \gt 0 \\ 0, \, \textrm{Otherwise} \end{cases} \\ \end{align*} [[/math]]
  • [[math]] \begin{align*} f_{X,Y}(x,y) &= \begin{cases} \frac{\alpha\theta^{\alpha}}{(x+\theta)(y + x + \theta)^{\alpha + 1}}, y \gt 0, x \gt 0 \\ 0, \, \textrm{Otherwise} \end{cases} \\ \end{align*} [[/math]]
  • Created by Admin, Jun 02'22

You are given the following about a portfolio of risks:

  • Risks are classified into three classes: 10% belong to class A, 30% belong to class B and 60% belong to class C.
  • Losses for each risk are uniformly distributed on an interval [a,b] with a and b dependent on class:
Class a b
A 0 1,500
B 500 2,300
C 100 1,000

Determine the expected loss for a randomly selected risk given that the loss is greater than 1,000.

  • 1,065
  • 1,238
  • 1,313
  • 1,587
  • 1,597
  • Created by Admin, Jun 02'22

You are given the following about a risk:

  • Claim frequency and claim severity are independent
  • Monthly claim frequency is Poisson distributed
  • Claim severity is uniformly distributed.

If [math]S[/math] is an annual loss for the risk, determine the maximum of [math]\operatorname{E}[S^2]/\operatorname{E}[S]^2[/math].

  • 1/2
  • 3/4
  • 1
  • 4/3
  • 5/3
  • Created by Admin, Jun 02'22

Let [math]X[/math] and [math]Y[/math] be continuous random variables with joint density function

[[math]] f(x,y) = \begin{cases} 24xy, \,\, 0 \lt x \lt 1 \,\, \textrm{and} \,\, 0 \lt y \lt 1-x \\ 0, \, \textrm{Otherwise.} \end{cases} [[/math]]

Calculate [math] \operatorname{P}[Y \lt X | X = 1/3][/math]

  • 1/27
  • 2/27
  • 1/4
  • 1/3
  • 4/9

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

  • Created by Admin, May 05'23

Once a fire is reported to a fire insurance company, the company makes an initial estimate, [math]X[/math], of the amount it will pay to the claimant for the fire loss. When the claim is finally settled, the company pays an amount, [math]Y[/math], to the claimant. The company has determined that [math]X[/math] and [math]Y[/math] have the joint density function

[[math]] f(x,y) = \begin{cases} \frac{2}{x^2(x-1)}y^{-(2x-1)/(x-1)}, \,\, x \gt1, y \gt 1 \\ 0, \, \textrm{Otherwise.} \end{cases} [[/math]]

Given that the initial claim estimated by the company is 2, calculate the probability that the final settlement amount is between 1 and 3.

  • 1/9
  • 2/9
  • 1/3
  • 2/3
  • 8/9

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

  • Created by Admin, May 05'23

The stock prices of two companies at the end of any given year are modeled with random variables [math]X[/math] and [math]Y[/math] that follow a distribution with joint density function

[[math]] f(x,y) = \begin{cases} 2x, \,\, 0 \lt x \lt 1, x \lt y \lt x +1 \\ 0, \, \textrm{Otherwise.} \end{cases} [[/math]]

Determine the conditional variance of [math]Y[/math] given that [math]X = x[/math].

  • 1/12
  • 7/6
  • [math]x + 1/2 [/math]
  • [math]x^2 - 1/6[/math]
  • [math]x^2 +x + 1/3[/math]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

  • Created by Admin, May 05'23

An actuary determines that the annual number of tornadoes in counties P and Q are jointly distributed as follows:

Q= 0 Q=1 Q=2 Q=3
P=0 0.12 0.06 0.05 0.02
P=1 0.13 0.15 0.12 0.03
P=2 0.05 0.15 0.10 0.02

Calculate the conditional variance of the annual number of tornadoes in county Q, given that there are no tornadoes in county P.

  • 0.51
  • 0.84
  • 0.88
  • 0.99
  • 1.76

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

  • Created by Admin, May 05'23

You are given the following information about [math]N[/math], the annual number of claims for a randomly selected insured:

[[math]] \operatorname{P}[N = 0] = \frac{1}{2}, \, \operatorname{P}[N = 1] = \frac{1}{3}, \, \operatorname{P}[N \gt1] = \frac{1}{6} [[/math]]

Let [math]S[/math] denote the total annual claim amount for an insured. When [math]N = 1 [/math], [math]S[/math] is exponentially distributed with mean 5. When [math]N \gt 1 [/math], [math]S[/math] is exponentially distributed with mean 8.

Calculate [math]\operatorname{P}(4 \lt S \lt 8) [/math]

  • 0.04
  • 0.08
  • 0.12
  • 0.24
  • 0.25

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

  • Created by Admin, May 05'23